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We consider a class of equilibrium time correlation functions, in fluids, between 
local physical quantities. We investigate whether the symmetry these correlation 
functions display with respect to these quantities on the N-particle level also 
exists on the one-particle (kinetic) level. In this context we derive a new sym- 
metric kinetic operator for a dense, hard sphere fluid. 
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1. I N T R O D U C T I O N  

Mark Kac 's  work in kinetic theory was in the tradit ional mold  of 
Boltzmann,  Ehrenfest, and Uhlenbeck,  where the dilute gas is described by 
a one-particle distribution function. This distribution function f ( r ,  v, t) is a 
generalization of Maxwell 's equilibrium velocity distribution function and 
is defined as the average number  density of particles with a certain velocity 
v at a certain posit ion r at time t in the gas. The time evolution of this dis- 
tr ibution function is, for a dilute gas, given by the Bol tzmann equation. 
The basic problem that  fascinated Kac  was the nature of the probabilistic 
ansatz that  is made in the collision term of the Bol tzmann equat ion (~) and 
which is the origin of  the apparent  paradoxes between kinetic theory and 
dynamics. This is the assumpt ion of  molecular  chaos, i.e., the independence 
of the velocities of  two particles that  are going to collide. This basic 
assumption leads immediately to the Stoszzahl Ansatz for the average num- 
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ber of (binary) collisions in a dilute gas and to the collision term in the 
Boltzmann equation itself. While the Ehrenfests had tried to elucidate the 
probabilistic nature of this ansatz (2'3~ by divising two very simple--and in 
some way related--models: the urn (or dog-flea) model ~2-4) and the wind- 
tree model, (2'3) Kac tried to go further and to actually derive the ansatz as 
a limiting property of a very large system that was initially chaotic, by 
proving what he called propagation of chaos/~'5) In addition, his excep- 
tional aptitude in devising as well as solving simple mathematical models 
led him not only to a solution of Ehrenfest's urn model, ~6~ but also to 
create other models that all illustrated various aspects of the Boltzmann 
equation.(7 9) 

Interestingly, although a rather simple kinetic theory of dense gases 
due to Enskog was available since 192111~ )--a theory based on a 
generalization of the Boltzmann equat ion--no simple model exists, as far 
as we know, that incorporates the new (dense gas) features of this theory. 
Although the Enskog theory is only applicable to hard spheres, when 
instantaneous binary collisions occur, and is only an approximate theory, it 
does contain a number of features that are obviously present in dense as 
opposed to dilute gases. In particular, the transfer of momentum and 
energy between two particles at collision--the so-called collisional trans- 
f e r - a s  well as the presence of multiple-particle collisions are important 
physical processes in dense gases not represented in the Boltzmann 
equation. 

A paper containing a simple Ehrenfest-Kac-like model that incor- 
porates some such dense gas features thus elucidating the Enskog rather 
than the Boltzmann equation would have been a very appropriate con- 
tribution to a volume honoring Mark Kac. In the absence of such a model, 
however, we present the solution to a problem that is related to dense, 
hard sphere gases and that might facilitate the construction of simple dense 
gas models. This problem is related to the fact that all collision operators 
used so far in the kinetic theory for f ( r ,  v, t) of dense, hard sphere systems, 
including the Enskog theory, have been asymmetric, in contradiction to the 
Boltzmann collision operator for a dilute gas, which is a symmetric 
operator. 

The introduction of a symmetric operator is not done here in the con- 
text of distribution functions, but rather in that of time correstation 
functions, introduced by Onsager, Green, and Kubo (see Ref. 12 for a sur- 
vey). These functions have come to the foreground as a description of the 
macroscopic properties of fluids after Kac's work in kinetic theory. 
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2. S T A T E M E N T  OF T H E  P R O B L E M  

In this paper, we restrict ourselves to correlation functions of local 
physical quantities in a fluid in thermal equilibrium, of the general 
type(12,13) 

Gob(r, r'; t) = a(vi) 6(r - ri) b(vj(t)) 3(r' - U(t)) 
i 1 j = l  

= a(vi) 3(r - r,) e 'c b(vj) O(r' - U) (2.1) 
i 1 j = l  

where the brackets denote a canonical equilibrium ensemble average at 
temperature T and number density n = N/V, with N the number of particles 
and V the volume of the fluid, r~(t) and vi(t) are the position and velocity, 
respectively, of particle i at time t with U(0)= ri, v~(0)= v~, and L is the 
Liouville operator of the system, a(v) and b(v) are functions of the velocity 
v and can, in principle, be part of a complete set of functions in v-space, so 
that G~b can be considered an element of an infinite matrix. 

Apart from obvious symmetry properties with respect to space, 
velocity, and time reversal, we are particularly interested in the symmetry 
with respect to a and b, namely 

Gab(r, r'; t) = G b , ( - r ,  - r ' ;  t) (2.2) 

Or, in terms of the Fourier transforms with respect to r - r ' ,  i.e., (13) 

[exp(ik �9 ri)] a(vi)[exp(tL)] F~b(k, t ) = ~  i 1 

N 

x ~ [ e x p ( - i k - r j ) ]  b(vj) (2.3) 
j = l  

the symmetry 

F~b(k, t ) =  Fba(k, t) (2.4) 

We confine ourselves here to the case k # 0, when Eq. (2.3) not only gives 
the time correlation functions for the quantities Z N_ 1 [exp(ik �9 r,)] a(vi) and 
~ = l [ e x p ( - i k ' r i ) ]  b(vj), but also for their fluctuations around 
equilibrium, since the equilibrium averages of these quantities vanish for 
k # 0. Equation (2.4) implies that the value of the fluctuation in "b" at time 
t, given that the fluctuation in "a" had a given value at t = 0, is on the 
average the same as the value of "a" at time t, given that "b" had a given 
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value at t = 0. For the special case that a (v )=  b(v)=  ! one obtains the den- 
sity-density correlation function Fll(k, t ) =  F(k, t), which is experimentally 
accessible by light and neutron scattering. (~3) 

Although Fab(k, t) for a, b r 1 have not been determined experimen- 
tally by light or neutron scattering, they have been determined by com- 
puter simulations of hard sphere ~ or Lennard-Jones systems (~5) for a and 
b related to locally conserved quantities (other than a = b = 1) or to local 
currents.O6 18) 

The basic question we want to address in this paper is whether the 
basic a, b symmetry on the N-particle level, as expressed in Eq. (2.4), can 
be maintained on the one-particle level, which is often used to evaluate the 
correlation functions Fab(k, t) theoretically, in order to make a connection 
between the macroscopic properties of the fluid, as incorporated in F~b, 
and the microscopic properties, as incorporated in the kinetic theories (see 
Refs. 19 for surveys) used to evaluate Fab. We know the answer to this 
question only for a few cases. First, for a dilute gas, where only binary 
collisions between particles have to be taken into account, one can replace 
the N-particle expression (2.3) for F~b(k, t) by the kinetic or one-particle 
expression 

F~b(k, t ) =  (a(vl){exp[L~(k,  v~)t]} b(Vl))l (2.5) 

where LB(k , Vl) is the linear inhomogeneous Boltzmann operator defined 
by 

Ls(k, Vl) = - - i k "  v I -]- nAB(v l) (2.6) 

with AB(v l) the Boltzmann binary collision operator acting on functions of 
v 1 only (19) [cf. Eq. (4.8) for the special case of hard spheres]. In (2.5), 
(f(vl)) l=SdVl~b(v~)f(Vl)  denotes the average of an arbitrary function 
f(v~), with ~b(v~) the normalized Maxwell velocity distribution function 

/" m \3 /2  -mv~ (2 .7 )  
r  exp 2k~T 

where m is the mass of the particles and kB is Boltzmann's constant. Since 
the Boltzmann operator LB(k, v l ) - -and in particular the binary collision 
operator AB(Vl)--are symmetric operators, so that 

(a(vl) LB(k, v~) b(vx))~l = (b(vl) LB(k, v~) a(vl))l  

<a(Vl) AB(Vl) b(vl)>l = <b(Vl) AB(V1) a(vl)>l 
(2.8) 
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F~b(k, t) manifestly satisfies the symmetry relation 

F~b(k, t )=  F~a(k, t) (2.9) 

also on the one-particle level for a single kinetic operator LB(k, vl). 
We consider next two attempts that have been made to evaluate the 

N-particle Fab beyond the Boltzmann or low-density limit. 

1. As a result of the work of Bogolubov, Choh, and Uhlenbeck (see 
Refs. 19 for surveys) on a systematic generalization of the Boltzmann 
binary collision operator AB(vl) to higher densities, an operator has been 
obtained for finite-range repulsive forces that includes the effect of ternary, 
i.e., three-particle, collisions. Since the resulting linear inhomogeneous 
collision operator LB(k, Vl)+ n2M(k, Vl) is also symmetric, the a, b sym- 
metry relation (2.4) also manifestly holds on the one-particle level for the 
single kinetic operator L~(k, v l )+  n2M(k, Vl). (2~ 

Because of the appearance of divergences when higher order collisions 
are included, (~9) a general statement on the a, b symmetry behavior of one- 
particle kinetic operators incorporating more than ternary collisions can- 
not be made at this point. 

2. A much used, but approximate kinetic theory, restricted to par- 
ticles interacting with a hard sphere potential, due originally to 
Enskog ~~ and usually now called the standard Enskog theory (SET), 
has been generalized in the last 15 years to a consistent~ yet still 
approximate, kinetic theory for dense, hard sphere fluids, usually called the 
revised Enskog theory (RET)./2~-27) In particular, this theory enables 
one--for hard sphere fluids--to approximate the N-particle correlation 
functions Fob(k,t) by one-particle expressions Fe~b(k,t). It is not 
immediately clear, however, whether the F~b(k, t) are symmetric in a and b, 
since the revised Enskog theory is approximate, so that the a, b symmetry 
present on the N-particle level does not necessarily carry over to the one- 
particle, kinetic, level. Up until now only explicit expressions for Feob(k, t) 
for a = b = 1 have been considered in the literature. These expressions for 
F~l(k, t) = F(k, t) [-given by Eq. (2.3) with a=b = 1] are all of the form 

F~(k, t) = S(k) < 1 {exp[LE(k, vl)t ] }1 ) (2.10) 

where LE(k, v~) is an asymmetric linear operator and S(k)=F(k, 0) is the 
static structure factor. In the literature, a number of different operators 
LE(k, v~) occur, all leading to the same result for FE(k, t), but all being 
asymmetric. 

Inspired by computer simulations of actual dense, hard sphere fluids 
by Alley and Alder, (14) we were led to consider other correlation functions 
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where, in particular, a(v) and b(v) are related to other locally conserved 
quantities, v and v 2, leading to a symmetric 5 x 5 matrix of correlation 
functions Fab(k , t) with a(v), b (v)=  1, v, or v 2. 

We will be concerned with the following questions: (1) What are the 
expressions for the F,b(k, t) on the kinetic, one-particle, level in the RET? 
(2) What is the symmetry of these expressions F2b(k, t) in a and b? (3) Is 
there a single, symmetric, one-particle operator LE.s(k, vl) that, like the 
Boltzmann operator Le(k, vl), manifestly yields Feb(k, t )=F~,(k ,  t)? The 
main point of this paper is to show that such a symmetric operator indeed 
exists, and to give the explicit form of this operator Le.s(k, vl). 

To illustrate that to obtain an a, b symmetry on the one-particle level 
is nontrivial, we also show that in the standard Enskog theory the a, b 
symmetry present on the N-particle level for the F~b(k, t) is lost on the one- 
particle level. 

The plan of this paper is as follows. In Section 3, we relate the 
equilibrium time correlation functions Fab to a one-particle nonequilibrium 
distribution function f(r ,  v, t). We derive explicit kinetic representations for 
the F~b in Section 4 at low densities using the Boltzmann equation for 
f(r ,  v, t) and in Section 5 at high densities, using the revised Enskog 
equation for f(r ,  v, t). The expression for LE,s(k, v~) is also given in this sec- 
tion. We conclude with a discussion of our results in Section 6, which 
includes the connection with the standard Enskog theory. 

3. O N E - P A R T I C L E  D I S T R I B U T I O N  F U N C T I O N  

Here we express the N-particle equilibrium time correlation functions 
Fo~(k, t) in terms of the one-particle nonequilibrium distribution function 
f(r ,  v, t) in the standard manner. (19'26"28-3~ Thus, we write 

F~b(k, t) = f dr[exp( - i k .  r)]  f dv b(v)f(r,  v, t) (3.1) 

where 

f(r ,  v, t ) =  3 ( r i -  r) 6 (v i -  v) 
i 1 t 

(3.2) 

is, in general, the number of particles at r with velocity v in a (non)- 
equilibrium ensemble at time t. Here the brackets labeled with t denote an 
N-particle nonequilibrium ensemble average 

( " " ) ' = f  dF p(F, t)... (3.3) 
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where F =  (r~, Vl,... , rN, VN) is the phase of the fluid and, with (2.3), 

i = l  

Here po(F) is the N-particle equilibrium canonical ensemble distribution 
function and /5  the transpose of L, generally defined by 

f drA(r) LB(F)= f dFB(F) LA(F) (3.5) 

for any two phase functions A and B. 
For continuous interparticle interactions, / 5 = - L ,  while for hard 

spheres, to which we will restrict ourselves in the following, (23'31'32) 

and 

N ~ N N  

L =  Z v ~ ' ~ r . + Z Z  T(O') (3.6) 
i = 1  i < j  

N ~ N N  

L=-Z v,. +ZZ 
i = l  i < j  

with the binary collision operators T(ij) and T(O') given by 

T(ij) = a f d6 Iv U �9 el O(v0-" 6) 3(r~i + 6) [b~(0") - 1 ] 

T(O) = cr f d~ Fv~j" 61 O(v~" 6)l-6(r~j- 6) ha(U) - cS(rii + *)] 

(3.7) 

(3.8) 

Here 6 = 6/a is a unit vector defining the geometry of the binary collision 
between the hard spheres i and j with diameter ~r, O(x) is the Heaviside 
step function, and v,.j = v i -  vj. The substitution operator b~(ij) acts only on 
the velocities v~ and vj and replaces them by the velocities v;, vj after the 
binary collision, 

b~(0")vi = v; = v i -  ~ ( ~ .  v,j) 
(3.9) 

b~(tj)vj = vj = vj + ~ ( e .  v0) 

We note that T(O') is the transpose of T(O'), i.e., 

f dFA(F) T(O ) B(F) =f  dFB(F) T(ij) A(F) (3.1o) 

so that T(/j) and T(0" ) are not symmetric operators. 
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To obtain kinetic representations for the Fab(k, t), we introduce the 
relative deviation h(r, v, t) of f(r ,  v, t) from its equilibrium value n~(v), 
defined by 

f(r ,  v, t ) =  n~b(v)[-1 + h(r, v, t)] (3.11) 

Then, the basic assumption made in kinetic theory is that h(r, v, t) is 
described at low densities by the linear Boltzmann equation and at high 
densities by the linear revised Enskog equation. On the basis of these 
assumptions, we derive kinetic representations for the FQb(k, t), which we 
call F~b(k, t) at low densities and Feb(k, t) at high densities. 

In the next section, we give a short derivation and discussion of the 
kinetic representations Fffb(k, t) at low densities, which we will use as a 
guideline to derive kinetic representations at high densities. 

4. L O W  D E N S I T I E S  

At low densities we start from the nonlinear Boltzmann equation for 
f(r ,  v, t), i.e., (11)'3 

( ~  + Vl" ~-~1)f(rl, vl, t) 

=fdr2fdvzTB(12)f(rl,vl,  t)f(r2, v2, t ) (4.1) 

with the Boltzmann collision operator given by 

Ts(12)=afd6 IVlz" ~[ O(v12" ~) O(r12)[-bo(12)- 1] (4.2) 

We remark that TB(12) follows from T(12) and T(12) when in Eq. (3.8) 
c3(r12 + ~) and 6( r12-~)  are replaced by 6(r12), i.e., when the difference in 
position of the colliding particles 1 and 2 is neglected. As a consequence, 
T~(12) is a symmetric operator, i.e., 

fdFA(F) T~(lZlB(r)=IdrB(r) Ts(12) A(F) (4.3) 

unlike T(12) and T(12) [cf. Eq. (3.10)]. 

3 See Refs. 29 and 30, where the consequences for equilibrium time correlation functions of the 
nonlinear Boltzmann equation as opposed to the linear Boltzmann equation are discussed. 
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Next we substitute the expression (3.11) for f(r ,  v, t) into (4.1) and 
keep the terms linear in h(r, v, t) only. Then, we obtain the linear 
Boltzmann equation for h(r, v, t), i.e., 

+v1" h(rl, vl, t) 

= n f d r 2 f d v 2 0 ( v 2 )  TB(12)(1 -1- P12) h(rl ,  Vl, t) (4.4) 

where we used that 

T8(12) ~b(vl) ~b(v2)= ~b(vl) ~b(v2) TB(12) 

and where the permutation operator P~2 replaces ra and v~ by r 2 and v 2 in 
functions of rl and Vl. Therefore, h(r, v, t) can be expressed in terms of 
h(r, v, 0) as 

h(r, v, t ) =  {exp[LB(r, v) t]  }h(r, v, 0) (4.5) 

Here, the one-particle operator LB(r, v) acting on functions of r and v is 
given by 

0 
LB(r, v) = --v-~rr + nAB(v ) (4.6) 

where the Boltzmann collision operator AB(v) acts on the velocity v only, 
and is given by 

AB(v~) = f dr 2 f dv~b(v2) TB(12)(1 + Pt~) (4.7) 

or 

AB(Vl)/(Vl) = (3" f d[~ f dv 2 ~(D2)Iv 12" ~] [~(v12" ~) 

x [ f ( v l ) - f ( v l ) + f ( v l ) - f ( v 2 ) ]  (4.8) 

with v' 1 and v; the restituting velocities [cf. Eq. (3.9)] and f (vl )  an 
arbitrary function of vl. 

Substitution of Eq. (3.11) for f ( r ,  v, t) [with Eq. (4.5) for h(r, v, t)] 
into Eq. (3.1) for Fab(k , t) yields 

F~b(k, t) = n dr [exp(ik. r)]  dv b(v) ~b(v) 

x (1 + exp[Le(r, v)t] h(r, v, 0)) (4.9) 

822146/5-6-11 
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Using that ~ dr e x p ( i k - r ) = 0  for k # 0  and that h(r, v, 0) follows from 
Eqs. (3.11) and (3.2)-(3.4) to be 

h(r, v, 0 ) = 1  [exp(ik.  r)] a(v) (4.10) 

one has for the one-particle representation F~b(k, t) for Fab(k, t) 

F,~b(k, t )=  <b(vl){exp[L~(k, vl)t] } a(v~)>l (4.11) 

where 

L~(k, vl) = ~  dr1 [ e x p ( - i k .  rl) ] LB(r ~, vl) exp(ik- r~) 

= - i k .  vl + nAB(Vl) (4.12) 

which is the final result for the one-particle representation F,~(k, t) of 
f,b(k, t). 

Thus, also on the one-particle (kinetic) level F~b(k, t )=  F~a(k, t) [cf. 
Eqs. (2.5) and (4.11)], with a single one-particle operator L~(k, Vx) for all a 
and b, as L~(k, v) is a symmetric operator, since AB(v ) is symmetric. The 
symmetry of AB(v) follows from Eqs. (4.3) and (4.7), i.e., directly from the 
symmetry of TB(12). 

In the next section, we consider the F~,b at high densities. 

5. H I G H  D E N S I T I E S  

5.1. The  Revised Enskog Equat ion 

At high densities we start from the nonlinear revised Enskog equation 
for f(r ,  v, t), i.e., (23) 

(~+Vx .o@~l ) f ( r l , v  1, t) 

= f dr21dv2 T(12) f ( r , ,  vl, t) f(r2, v2, t) g(rl,r2, t (5.1) 

Here T(12) is given by Eq. (3.8), and g(rl,  r2, t) is the pair correlation 
function at contact of a fluid in inhomogeneous equilibrium at time t, with 
a one-particle distribution function given by f(r ,  v, t). As a consequence, 
g(rl,  r z, t) depends functionally on the local number density n(r, t )=  
[ dv f(r ,  v, t). 
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We remark that the revised Enskog equation differs in two respects 
from the Boltzmann equation. First, through the use of T(12) in Eq. (5.1), 
the difference in position of two colliding particles is taken into account, 
which introduces, physically, the (instantaneous) collisional transfer of 
momentum and energy. Second, g(r~, r2, t) > 1 incorporates approximately 
the increase in binary collisions at high densities, since g(r~, r 2, t )=  1 at 
low densities. 

5.2. One-Particle Representation 

To obtain the linear revised Enskog equation for h(r, v, t), we sub- 
stitute Eq. (3.11) for f(r ,  v, t) into (5.1) and expand g(r 1, r2, t) around 
total equilibrium, 

g ( r l ,  r2,  t)  = X + 5g(rl, r2,  t)  + " '"  (5.2) 

Here Z = 7~(n) is the value of the pair correlation function at contact in total 
equilibrium at density n and c~g(rl, r 2, t) is the term in the expansion of g 
that is linear in ~ dv h(r, v, t). Then, keeping the terms linear in h(r, v, t) 
only, one obtains the linear revised Enskog equation for h(r, v, t), i.e., 

25 + v , .  h(ri,  v,, t) 

= nz f dr2 f dv2 r T(i2)(1 + P12) h(rl, Vl, l) 

+ n  f dr 2 f dr2 r 5P(12)cSg(r,, r2, t) (5.3) 

where one has used that 

T(12) r r = r r T(12) 

and [ dr2 T(12)1 = 0. We refer to the first contribution on the right-hand 
side of Eq. (5.3) as the collision term [cf. Eq. (4.4)] and the second con- 
tribution as the mean field term. 

Equation (5.3) can be rewritten as follows. First, we introduce for the 
collision term the Enskog collision operator Ae(r l ,v l ) ,  which acts on 
functions of rl and Vl, and is given by 

"/IE(rl, V1) = f dr2 f dr2 r T(12)(1 + P,2) (5.4) 
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Next we introduce for the mean field term the mean field operator .~(rl, Vl) 
defined by 

Vl) h(rl, vl, t) = f dr 2 f dv 2 ~b(v2) T(12) 6g(rl, r2, t) (5.5) A(rl, 

which has been evaluated explicitly in the literature <23'26~ with the result 

A(r,,vl)=Vl'~--~l;dr2fdv2r (5.6) 

Here C(r) is the direct correlation function of the fluid in equilibrium and 
Co(r) its low-density limit [i.e., Co(r)= -O(o-r)]. Then Eq. (5.3) can be 
rewritten in the form <23"25) 

h(rl, vl, t )=  EE(rl, vl) h(rl, Vl, t) (5.7) 

with 
0 

L,E(rl, vl)=- --vl "~r l+ nzAE(rl, v l )+  n-~(rl, vl) (5.8) 

Using the formal solution 

h(rl, Vl, t)~- {exp[/SE(rl, vl)t] } h(rl, vl, 0) (5.9) 

of Eq. (5.7) and Eqs. (3.11) and (3.1), one obtains 

F~b (E k, t) - i k "  

• (1 + {exp[iE(r, v)t] } h(r, v, 0)) (5.10) 

Therefore, using that with Eqs. (3.11) and (3.2)-(3.4) 

1 h(r,v,O)=~[exp(ik'r)]{a(v)+[S(k)-l](a(vl))~} (5.11) 

one finds 

FEb(k, t )=  (b(vl){exp[/~E(k, vl)t3}{a(vl) + I S ( k ) -  1] (a(v l ) ) l})~  

(5.12) 

Here 

/2E(k, v l )=  - ik"  Vl + n)VIE(k, v l )+  nA(k, Vl) (5.13) 
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is related to/S,e(rl, vl) by 

Le(k , v l ) = l f  dr1 [exp(--ik-rl)  ]/Ze(rx, Vl) exp(ik 'r l)  (5.14) 

and similar expressions obtain for AE(k, vl) and A(k, Vl). In fact, with 
Eqs. (3.8) and (5.4), we obtain for Ae(k, vl) 

Ae(k, v , )=  ; I  dr11 dr2 f dr2 ~b(v2)[exp(-ik "rx)] ~'(12) 

x (1 + P12) exp(ik �9 rl) 

=r f dd f dve+('92) lv~2"r O(v~2"a) 

x (be(12)- 1 + { [exp(- ik"  a)] b~(12)- exp(ik. ~)} P~2), 

(5.15) 

while with Eq. (5.6) we find for A(k, Vl) 

A(k, v~) = [C(k) -ZCo(k) ] ik 'v  , f dv 2 c~(v2) el2 (5.16) 

Here 

C(k) = f dr exp(ik �9 r) (~(r) = IS(k) - 1 ]/nS(k) 

is the direct correlation function, while Co(k)= -4~o2j~(ko)/k is its low- 
density limit, where j~(x) is the spherical Bessel function of order 1. 

Equations (5.12) and (5.13) provide a one-particle representation 
F,L),(k, t) for the N-particle correlation functions Fob(k, t). 

5.3. Transposed Representat ion 

Due to the fact that T'(I2) is not a symmetric operator [cf. Eq. (3.10)], 
neither AE(k, v) nor A(k, v) is symmetric. As a consequence, another 
representation of F~b can be found using the transpose Ae(k, vl) of 
/IE(k, v), defined by 

<f(vl) AE(k, v,) g(vl)>l = < g(v,) .4E(k, v,) f(vl)>~ (5.17) 
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and given by [cf. Eqs. (3.10) and (5.15)1 

1 dr BE(k, Vl): -g f 1 f dr2 f dr2 ~b(v2){exp[ -ik~ r l ]}  

x T(12)(1 +P12) e x p ( - i k ' r ~ )  

=o f a, f  20(v2) lv, . j 

x [b~( lZ) - l ]{ l+exp( - ik .~)pL2 } (5.18) 

as well as the transpose A(k, vz) of .~(k, v~), given by 

A(k, Vl)= I t ( k ) -  )~Co(k)] f dv 2 ~(U2) ik'v2P~2 (5.19) 

Then we obtain for the transposed representation of Fib(k, t) 

F~b(k, t )=  ({a(vl) + IS(k)-  1](a(vl)>l } 

x {exp[Le(k, Vl)/] } b(vl)>l (5.20) 
with 

Le(k, v~)= - i k . v  I + nxAe(k, v~)+ nA(k, vt) (5.21) 

This representation has been used in Refs. 33 and 34 to study FE(k, t) [cf. 
Eq. (2.10)1. 

It is not obvious from the form of the expressions (5.12) and (5.20) for 
F,eb(k, t) that they are symmetric in a and b. This is due not only to the dif- 
ferent way in which the functions a and b occur in these expressions, but 
also to the asymmetry of the one-particle o p e r a t o r s / ~  and LE. In the next 
subsection, we will not only show that (5.12) and (5.20) are symmetric in a 
and b, but also that there is yet another expression for F~b(k, t) that uses a 
single symmetric one-particle operator and that is obviously symmetric in a 
and b. 

5.4. S y m m e t r i c  Representa t ion  

We prove first for Eq. (5.20) that the Feb(k, t) are symmetric in a and 
b. To that end, we introduce a symmetric operator J ( v l )  and its inverse 
Y - l ( v l )  defined such that in the expression (5.20) for Feb(k, t), a and b 
occur symmetrically at t = 0, i.e., that in the expression 

F,eb(k, 0 ) =  < {a(v,) + [ S ( k ) -  1 ] ( a ( v l ) ) t  } b(v l ) ) ,  

= <{a(vl )+  1]<a(vl)>l} (5.22) 
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a(v) and b(v) are treated symmetrically, after ~(v~) has acted to the right 
and ,~ 1(vl) to the left. Thus, one obtains for 5P(vi) the equation 

Y(vl) f(v~) = 5~- ~(vl){f(vl) + [ S ( k ) - l ] ( f ( v l ) > l  } (5.23) 

One of the two solutions to this equation is 

~(Vl) f (v l )=f (v , ) - t -  [ x / S ( k ) -  1 ] ( f(vl)  > 
! (5.24) 

5 ~ l (v , ) f (v~)=f(v~)+[x /S(k  ) l ] ( f ( v ~ ) >  

while the second solution [with ~ replaced by - S , , / ~ ]  will be dis- 
cussed later. 

Then, for finite times, using the identity operator 5P-l(v~)Se(v~) in 
Eq. (5.20) for F,L~(k, t), we obtain [cf. Eq. (5.22)3: 

F ,L; (k , t )=({a(v l )+[  S , , /S~ - l ] ( a (v~ )> l}  

x {exp[Le, s(k, Vl)t]}{b(Wl)-~- [ S ~ - - 1 ] < b ( V l ) > l } >  1 (5.25t 

where 

or 

Here 

and 

LE, s(k, Vl) = d~P(Vl) I~E(k , Vl) ~r l(vl) (5.26) 

AE,.,(k, vl)f(v~)= Ae(k, v~) f ( v l ) -  (Ae(k, v~) f(vl) >1 (5.28) 

x / S ~ -  1 f dr2 (vl +v2) p12 As(k, v~)-  n ~ -  (J(v2) ik" (5.29) 

The derivation of Eq. (5.27) from (5.26) is straightforward when one uses 
that Ae(k, v~)l = 0  and [cf. Eq. (5.18)] 

(AE(k, vl) f(v~) >, = Co(k)(ik 'v,  f (v : ) )  1 (5.30) 

The inhomogeneous Enskog operator Lz,s(k, v~) given in Eq. (5.27) is 
a symmetric operator, since both Ae, s(k, v~) and As(k, Vl) are symmetric 
operators, as follows from Eqs. (5.4), (5.18), (331 and (5.29), respectively. 

Le, s(k, v~) = - i k -  v~ + nzAe, s(k, v~) + nAs(k, Vx) (5.27) 
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Thus, we have found an expression for Feb(k, t) given by Eqs. (5.25) 
and (5.27) which involves a single symmetric one-particle streaming 
operator exp[Le,,(k, v~)t] and which treats a and b symmetrically, so that 
indeed obviously Feb(k, t )=  F~a(k, t). 

Second, we note that Eqs. (5.25) and (5.27) can also be derived from 
the transposed representation for Feb(k, t) given by Eqs. (5.12) and (5.13). 
Then one inserts 5e(vl)5"-1(vl)  instead of 5 e 1(vl)5e(Vl) and one finds 
that 

EE,~(k, vj)=5~-t(v~)[SE(k, v~)Se(v~)=LE,~(k, v~) (5.31) 

which also leads to Eq. (5.25) for F~b(k, t). 

6. D I S C U S S I O N  

We end with a number of remarks. 

1. The Enskog expressions F~eb(k, t) given by (5.25) tend at low den- 
sities to the Bottzmann expressions F~b(k, t) given by Eq. (2.5) as long as 
k a r l .  To see this, we note that l imn~o)~=l ,  l i m n ~ o S ( k ) = l ,  
lira, ~o As(k, vl) = O(kcr), and AE,s(k, vl) = Ae(vt) + O(ka), so that for low 
densities and ka ~ 1, LE,s(k, v l )=  Le(k, v~) and Fe~b(k, t)= F~b(k, t). 

Thus, we have found continuous extensions F,L~(k, t) of the Boltzmann 
~ k  expressions F,b ( , t) to higher densities, still involving a single symmetric 

one-particle streaming operator exp[LE,s(k, v~)t], which is a continuous 
extension of the operator exp[LB(k, v~)t] to higher densities. 

2. The operators L~(k, vl) [cf. Eq.(4.12)] and LE, s(k, vl) [cf, 
Eq. (5.27)] are the only symmetric operators that describe all F~b(k, t) and 
F~b(k , t) respectively, when one requires that: 

(i) Each function a(vt) in F~b(k,t) on the one-particle level 
corresponds, one to one, to the function ~ a(v~)exp(ik, r~) on the N-par- 
ticle level. 

(ii) LE.~(k, vl) is a continuous extension of LB(k, v~) to higher den- 
sities. 

One needs (i) to exclude the results of the trivial transformations 

O~,a(vl) = O~, la(vl) = a(vl) - 2<a(vl) ~(u > l~/(Vl) 

for any normalized ~(Vl). For, with the O~ one can transform the F~b(k, t) 
into expressions that also involve symmetric one-particle Boltzmann 
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operators L(fl)(k, Vl), which are unequal to LB(k, vl), however. For 
example, if ~(Vl)= 1, 

F~,o(k, t) = < {a(v~) - 2<a(v~)>~ } {exp[L~)(k, vl)t ] } 

x {b (v t ) -  2<b(vl)>l} > 1 (6.1) 

with L~ ) = 01LB01,  i.e., 

L~)(k, v~) = - i k "  v~ + nAB(v1) 

f dr2 ~b(v2) ik. (v~ + v2) P~2 (6.2) + 2 

Here L~(k ,  vl) is also symmetric, but the function Z,  exp(ik ' r i )  on the 
N-particle level corresponds now to - 1  on the one-particle level [cf. 
Eq. (6.1)] instead of to 1. 

One needs (ii) to exclude the solution of Eq. (5.23) given by Eq. (5.24) 
with S x / ~  replaced by - S x / ~ ,  since this solution leads to expressions 
for F~b(k , t) involving the symmetric one-particle operator O 1LE.s(k, v~)O1, 
which tends at low densities to L(BI)(k, vl) instead of to LB(k, vl). 

3. The main results of this paper are summarized in Table I. There 
one sees how the N-particle correlation functions F,b(k , t) given by 
Eq. (2.3) translate to the one-particle level. At low densities one uses the 
expressions for Fffb(k , t) given by Eqs. (2.5) and (2.6), while at high den- 
sities the expressions for F~(k, t) given by Eqs. (5.25) and (5.27) are used. 
Both involve symmetric one-particle operators, in contrast to the 
expressions Fib(k , t) given by Eqs. (5.20) and (5.21), which involve the 
asymmetric operator Le(k , v 1). 

Table I. Replacement Rules for the Correlation Functions Fab(k,t) 
from the N-Part ic le to the One-Particle Level at Low Densities [FBb(k, t ) ]  

and High Densities [F~b(k, t ) ]  ~ 

F~t,(k, t) b~h(k, t) F~eh(k, t) F~(k, t) 

< > { >1 { >I < >, 
L L~(k, vl) LE, s(k, vl) LE(k, vl) 

~[exp(ik'r~)]a(v,)/x/~ a(vl) a(u i) -m [ S S ~ - -  ~ ] <a(u i) > i a(vt)-[S(k)--l]<a(v,)>1 
71 

[exp(-ik.ry)]b(vy)/x/N b(v~) b(vl)+ [ S ~ -  ll<b(vl)>1 b(u 
i - 1  

a For Feb(k, t) there is a symmetric [with Le,s(k, vl)]  and an asymmetric representation [with 
LE(k, vl)]. 
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4. To illustrate that the a, b symmetry for the correlation functions 
F~b(k, t) present at the N-particle level does not necessarily carry over to 
the one-particle kinetic level, we consider the predictions of the standard 
Enskog theory for F~b(k, t), which we call FS{(k, t). 

Enskog originally proposed Eq.(5.1) with the assumption that 
g(r 1, r 2, t) is given by 

gse(rl, r2; t)= Z (n ( [ ! - ~  ; t)) 

where 

(6.3) 

( r l + r 2 )  - , / r l + r 2  ) 
n\  2 ,t =f  v, - - '  a v j  ~ - - - ~ ,  t (6.4) 

is the number density at time t in the fluid (out of equilibrium) at the point 
of contact of the two colliding spheres located at r~ and r2, respectively. 
Then gsL.(rl, r2;t ) is expanded around total equilibrium, i.e., 

gsE(r~, r2 ; t )=Z  + 6gsE(r~, r2;t) 

where 

0Z . . . .  / r l + r 2  ) 6gsE(rl,r2, t )=~n f d v 3 o t v , ) n ~  , v3, t (6.5) 

Then, by replacing 6g(rt, r2, t) in Eq. (5.3) by ~gsE(rl, r2, 1), one obtains 
the linearized standard Enskog equation for h(rl, vl, t), with an asym- 
metric operator Ese(rL, v~), analogous to the operator LE(r~,vl) in 
Eq. (5.7). 

The derivation of the expressions FS{(k,t) in the SET is 
straightforward and very similar to that of F~),(k, t) in the RET given 
above. We will only give the final result [cf. Eqs. (5.25) and (5.27)]: 

F~S~(k,t)=l{a(vl)+ ~ S(k) 11 (a(vl)) l  } 

• {exp[Lsu.,(k, v,)t]} {b(v~) + [ ~ -  l ] (b (Vl ) ) ,}~  (6.6) 
/ 1 

with a symmetric one-particle operator 

Lse.~.(k, vl) = - i k .  vl + nzAE,~(k, vl) + nAs~,,(k, vl) (6.7) 
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Here 

and 

x/z(~)-  1 
AsE, s(k, v l ) -  - ~ - X ~ "  fdv2q)(v2)ik'(vl+v2)P12 (6.8) 

{1 47cn~r 2 F 0 Z . - '  X(k) 

are analogous to A~.(k, v,) and S(k), respectively, in Eq. (5.29). 
Thus, when (a(v,)>~ = (b(v,)>l = 0  in Eq. (6.6), FSff(k, t )=  Fs~e(k, t) 

and the basic a, b symmetry is maintained in the standard Enskog theory. 
However, if only (b(vl)>,  = 0  I-cf. Eq. (6.6)] 

FS~(k, t) = ~  F~,~(k t) (6.10) 
( ) 

so that then the a ,b symmetry is maintained in the SET only when 
S(k) = S(k), i.e., for a finite number of k values, including k = 0. 

5. Finally, we remark that the existence of symmetric operators LE, s 
and LsE, s in the RET and SET, respectively, facilitates the proof of the 
decay to zero of all correlation functions F,~b(k, t) and FS~(k, t) for large 
times. 

A proof then involves only two steps. First, one uses that 

Re LE, s(k , v,) = Re LsE, s(k, Vl) - R e  AE(k, vl) (6.11) 

and that Re AE(k, Vl) is a seminegative-definite operator, i.e., (27"33) 

<t//:~(rCl)~ge AE(k, vl)J ~/(u (6.12) 

for any ~(v~), where the equality sign only holds for ~(Vl)= 1. 
Then one uses that the following inequality holds for all eigenvalues zj 

and corresponding eigenfunctions 6j(v,) in a spectral eigenmode decom- 
position of Le, s or LsE, s: 

Re zi= ($*(vl)ERe AE(k, Vl) ] [//j(u >1 
(~p*(v~) r 5~ <0 (6.13) 

where the equality sign is excluded since ~9j(vx)# 1 for all eigenmodes j. 
Equation (6.13) implies the decay of Feb(k, t) and Fs{'(k, t) via all its eigen- 
modes. 

We note that a previous proof (33) of the decay of Fe, b(k, t) based on 
LE(k, Vx) instead of Le,~(k, Vl) was much more involved, since in that case 
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the right and left eigenfunctions were not the same and no direct connec- 
tion, as between Eqs. (6.12) and (6.13), could be used. 

Whether or not the correlation functions Fab(k, t) for a moderately 
dense gas, as described by the kinetic, symmetric one-particle operator 
LB(k, vl)+nZM(k, vl), also decay to zero for large times is an open 
question. 
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